Weekly

Infant Mortality and Low Birth Weight Among Black and White Infants United States, 1980-2000

Despite substantial reductions in U.S. infant mortality during the past several decades, black-white disparities in infant mortality rates persist. One of the Healthy People 2010 national objectives for maternal and infant health is to reduce deaths among infants aged <1 year to ≤ 4.5 per 1,000 live births among all racial/ethnic groups (objective 16-1c) (1). Important determinants of racial/ethnic differences in infant mortality are low birth weight (LBW), defined as <2500 grams, and very low birth weight (VLBW), defined as <1500 grams. High birth weight-specific mortality rates (BWSMRs) occur at these low birth weights. Healthy People 2010 goals include reducing LBW to 5% and VLBW to 0.9% of live births (objectives 16-10a and 16-10b, respectively). To assess progress toward meeting these national objectives, CDC analyzed birth and death certificate data from the National Center for Health Statistics. This report describes trends in mortality and birth weight among black and white infants, which indicate persistent black-white disparities and underscore the need for prevention strategies that reduce preterm delivery and specific medical conditions that lead to infant death.
CDC analyzed race-specific infant mortality data for 19801999 (2) and preliminary mortality data for 2000. Trends in LBW and VLBW were calculated by using birth certificate data for 1980-2000, with 2000 being the most recent year for which data were available (3). BWSMRs were calculated from linked birth and infant death files for 1983-1991 and 1995-1999; LBW infants were divided into VLBW and moderate LBW (MLBW), defined as 1500-2499 grams. Both racespecific LBW/VLBW data and BWSMRs were calculated by using the race of the mother.
In 1980, a total of 3,612,258 live births occurred among all races $(2,936,351$ to white women and 568,080 to black women). In 2000, a total of 4,064,948 live births occurred among all races ($3,202,932$ to white women and 619,970 to
black women). Although infant mortality declined 45.2% for all races during 1980-2000 (from 12.6 to 6.9 deaths per 1,000 live births) (Table 1), the decline was greater for whites than for blacks. During the same period, infant mortality among whites declined 47.7% (from 10.9 to 5.7), and infant mortality among blacks declined 36.9% (from 22.2 to 14.0). During 1980-2000, the black-white ratio of infant mortality increased 25.0% (from 2.0 to 2.5). However, the ratio remained unchanged during 1990-1998 (2.4 for all years).
During 1980-2000, the percentage of LBW infants increased 11.8% and that of VLBW infants increased 24.3% (Table 1). Although the black-white ratio of LBW births decreased 10.0% (from 2.2 to 2.0), the LBW rate increased 2.4% for blacks (from 12.7% to 13.0%) and increased 14.0% for whites (from 5.7% to 6.5%). Black LBW rates increased 6.3% during the 1980 s and decreased 2.3% during 19902000. LBW rates remained stable for whites during the 1980s but increased 14.0% during 1990-2000. VLBW rates increased 23.8\% for blacks (from 2.48\% to 3.07\%) and 26.7\% for whites (from 0.90% to 1.14%). The VLBW black-white ratio decreased 2.5% (from 2.76 to 2.69) during the entire period but increased 12.7% during the 1980 s and decreased 12.4% during 1990-2000. This was due to a reversal in VLBW trends during each decade; during the 1980s VLBW increased

INSIDE

592 Update: AIDS - United States, 2000
595 Diagnosis and Reporting of HIV and AIDS in States with HIV/AIDS Surveillance - United States,1994-2000
598 Weekly Update: West Nile Virus Activity — United States, July 3-9, 2002
598 Resumption of Routine Schedule for Diphtheria and Tetanus Toxoids and Acellular Pertussis Vaccine and for Measles, Mumps, and Rubella Vaccine

The $M M W R$ series of publications is published by the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

SUGGESTED CITATION

Centers for Disease Control and Prevention. [Article Title]. MMWR 2002;51:[inclusive page numbers].

Centers for Disease Control and Prevention
Julie L. Gerberding, M.D., M.P.H. Director

David W. Fleming, M.D. Deputy Director for Science and Public Health

Dixie E. Snider, Jr., M.D., M.P.H.
Associate Director for Science
Epidemiology Program Office
Stephen B. Thacker, M.D., M.Sc. Director

Office of Scientific and Health Communications

John W. Ward, M.D.
Director
Editor, MMWR Series
David C. Johnson Acting Managing Editor, MMWR (Weekly)

Jude C. Rutledge
Teresa F. Rutledge
Jeffrey D. Sokolow, M.A.
Writers/Editors, MMWR (Weekly)
Lynda G. Cupell
Malbea A. Heilman
Beverly J. Holland
Visual Information Specialists
Quang M. Doan
Erica R. Shaver
Information Technology Specialists

Division of Public Health Surveillance and Informatics

Notifiable Disease Morbidity and $\mathbf{1 2 2}$ Cities Mortality Data
Robert F. Fagan
Deborah A. Adams
Felicia J. Connor
Lateka Dammond
Patsy A. Hall
Pearl C. Sharp
19.0% for blacks and 5.6% for whites, but during 1990-2000, VLBW increased 5.1 \% for blacks and 20.0% for whites.

Over time, BWSMRs varied by race of mother (Table 2). During 1983-1999, BWSMRs for LBW declined 36.9\% for all races (46.7\% for MLBW and 38.3\% for VLBW). Both whites and blacks had similar percentage declines in BWSMRs among infants whose birth weights were $\geq 2,500$ grams, and the black-white gap for this birth weight group increased slightly. However, for both MLBW and VLBW categories, whites had greater declines. White BWSMRs decreased 49.4\% for MLBW infants and 41.6% for VLBW infants, and black BWSMRs decreased 38.0% for MLBW infants and 28.4% for VLBW infants. The black-white ratio of BWSMRs increased 39.0% (from 1.03 to 1.43) for all LBW infants, increasing 22.4% (from 0.85 to 1.04) for MLBW infants and 22.3% (from 0.94 to 1.15) for VLBW infants. Accordingly, the historically lower BWSMRs among black MLBW and VLBW infants have disappeared; during the 1980s, BWSMRs were lower among VLBW black infants than among white infants, and during the 1990 s, BWSMRs were lower among VLBW white infants than among black infants. Similar reversals in BWSMRs are shown for MLBW infants in 1999.
Reported by: S Iyasu, MBBS, KTomashek, MD, Div of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion; W Barfield, MD, EIS Officer, CDC.
Editorial Note: The findings of this report indicate that although infant mortality has decreased among all races during the past two decades, the overall black-white gap for infant mortality has widened. The lack of progress in closing this gap is a consequence of 1) the persistence of a two- to threefold risk for LBW and VLBW among black infants compared with white infants, and 2) smaller reductions in BWSMRs over time among black VLBW births compared with white VLBW births. Although small reductions occurred in black-white disparities in LBW births and VLBW births during the 1990 s, these were attributed partly to greater increases in percentages of LBW and VLBW births among whites, rather than to large reductions in LBW and VLBW among blacks. If these trends persist, the national health objectives to eliminate racial disparities in LBW and VLBW births will not be met. In addition, increases in LBW and VLBW births will slow reductions in infant mortality.

Recent increases in LBW and VLBW births among whites probably are a result of increases in preterm delivery, changes in obstetrical practices, and induction of labor. During 19891996, the crude singleton preterm birth rate increased 8% among non-Hispanic whites but decreased 10% among nonHispanic blacks (4). In addition, increases in white LBW and VLBW births might be attributed partly to increases in multiple births from assisted reproductive therapies. During

TABLE 1. Infant mortality*, low birth weight ${ }^{\dagger}$, and very low birth weight ${ }^{\S}$ rates and ratios ${ }^{\circledR}$ among black and white births, by year United States, 1980-2000

	Infant mortality				Low birth weight				Very low birth weight			
Year	Black	White	Ratio	All races	Black	White	Ratio	All races	Black	White	Ratio	All races
1980	22.2	10.9	2.0	12.6	12.7	5.7	2.2	6.8	2.48	0.90	2.76	1.15
1981	20.8	10.3	2.0	11.9	12.7	5.7	2.2	6.8	2.52	0.91	2.74	1.16
1982	20.5	9.9	2.1	11.5	12.6	5.6	2.3	6.8	2.56	0.91	2.73	1.18
1983	20.0	9.6	2.1	11.2	12.8	5.7	2.2	6.8	2.60	0.92	2.74	1.19
1984	19.2	9.3	2.1	10.8	12.6	5.6	2.3	6.7	2.60	0.93	2.78	1.19
1985	19.0	9.2	2.1	10.6	12.6	5.7	2.2	6.8	2.71	0.93	2.72	1.21
1986	18.9	8.8	2.1	10.4	12.8	5.7	2.2	6.8	2.73	0.93	2.86	1.21
1987	18.8	8.5	2.2	10.1	13.0	5.7	2.2	6.9	2.79	0.94	2.90	1.24
1988	18.5	8.4	2.2	10.0	13.3	5.7	2.3	6.9	2.86	0.93	3.08	1.24
1989	18.6	8.1	2.3	9.8	13.5	5.7	2.4	7.0	2.95	0.95	3.11	1.28
1990	18.0	7.6	2.4	9.2	13.3	5.7	2.3	7.0	2.92	0.95	3.07	1.27
1991	17.6	7.3	2.4	8.9	13.6	5.8	2.3	7.1	2.96	0.96	3.08	1.29
1992	16.8	6.9	2.4	8.5	13.3	5.8	2.3	7.1	2.96	0.96	3.08	1.29
1993	16.5	6.8	2.4	8.4	13.3	6.0	2.2	7.2	2.96	1.01	2.93	1.33
1994	15.8	6.6	2.4	8.0	13.2	6.1	2.2	7.3	2.96	1.02	2.90	1.33
1995	15.1	6.3	2.4	7.6	13.1	6.2	2.1	7.3	2.97	1.06	2.80	1.35
1996	14.7	6.1	2.4	7.3	13.0	6.3	2.1	7.4	2.99	1.09	2.74	1.37
1997	14.2	6.0	2.4	7.2	13.0	6.5	2.0	7.5	3.04	1.13	2.69	1.42
1998	14.3	6.0	2.4	7.2	13.0	6.5	2.0	7.6	3.08	1.15	2.68	1.45
1999	14.6	5.8	2.5	7.1	13.1	6.6	2.0	7.6	3.14	1.15	2.73	1.45
2000**	14.0	5.7	2.5	6.9	13.0	6.5	2.0	7.6	3.07	1.14	2.69	1.43

* Number of infants born alive who died within the first year of life per 1,000 live births.
$\dagger<2,500$ grams.
<1,500 grams.
${ }^{1}$ Ratio of black to white infant mortality.
** Preliminary data for infant mortality.
Source: National Center for Health Statistics. Mortality data based on race of infant as numerator and race of mother as denominator. Birth weight data based on birth certificate data and race of mother.

TABLE 2. Birth weight-specific mortality rates (BWSMRs)* for black and white low birth weight and very low birth weight infants United States, 1983-1999 ${ }^{\dagger}$

Race ${ }^{\text {§ }}$	Birth weight (grams)	Year					
		1983	1985	1988	1990	1995	1999
Black	$\geq 2,500$	6.8	6.2	5.9	5.5	4.5	4.0
	<2,500	95.7	99.4	91.3	87.0	79.2	78.1
	1,500-2,499	26.6	25.1	23.2	22.0	18.2	16.5
	<1,500	378.4	370.5	333.0	316.0	285.6	270.8
	All weights	19.2	18.6	17.8	16.9	14.6	14.0
White	$\geq 2,500$	4.1	3.9	3.6	3.2	2.7	2.3
	<2,500	93.3	88.2	78.7	71.2	59.7	54.8
	1,500-2,499	31.4	29.0	25.8	23.5	18.3	15.9
	<1,500	404.0	385.1	347.2	307.7	260.6	236.0
	All weights	9.3	8.9	8.0	7.3	6.3	5.8

*Per 1,000 live births (singleton and multiple) by birth-weight category.
${ }^{\dagger} 1983$ was the earliest year that BWSMRs were calculated; 1999 is the most recent year.
${ }^{\S}$ Race of mother.
Source: National Center for Health Statistics. Because BWSMRs are based on race of mother, they might differ slightly from total BWSMRs.

1980-1997, the rate of twin births among white mothers increased at a rate nearly twice that of black mothers (5). Although multiple gestations increase the risk for LBW and VLBW births, LBW rates are higher among singleton infants conceived with assisted reproductive technology (6). Nevertheless, blacks continue to have a two- to threefold higher risk than whites for LBW and VLBW. In 1991, >66\% of the black-white racial disparity in infant mortality occurred among VLBW infants (7). The specific causes for increased low birth
weight and preterm delivery might differ for blacks and whites. The etiology of black-white disparities in low birth weight is complex and is not explained entirely by demographic risk factors such as maternal age, education, or income (8). Factors that might contribute to the disparity include racial differences in maternal medical conditions, stress, lack of social support, bacterial vaginosis, previous preterm delivery, and maternal health experiences that might be unique to black women (9).

Of additional concern are disparate improvements in BWSMRs for blacks and whites over time. During the 1980s, BWSMRs for black VLBW infants were lower than for white VLBW infants. Although these differences are poorly understood, the relative advantage of lower BWSMRs among VLBW blacks has disappeared. Because BWSMRs are influenced by access to quality obstetric and neonatal care, particularly among VLBW births, differential access might exist for blacks compared with whites. Declines in neonatal mortality because of improvements in treatment for specific medical disorders (e.g., respiratory distress syndrome) have been greater for whites than for blacks (10).

The findings of this report are subject to at least three limitations. First, infant mortality was calculated by using the race of the infant as the numerator and the race of the mother as the denominator, and might differ slightly from total BWSMRs. This number might affect calculations of infant mortality in which the race of the mother and that of the infant are reported as different. Second, linked data from 1983 are the earliest linked birth infant death data by race of mother and were not available for 1980-1982 and 1992-1994. Finally, vital records data contain mostly demographic information and do not explain specific reasons for racial disparities in outcomes. Studies that examine quality of health-care delivery, specific maternal and neonatal interventions, and social and environmental determinants might identify the reasons for these differences.
Prevention strategies must focus on reducing LBW and VLBW births to eliminate racial disparities in infant mortality. During the last decade, these disparities have decreased, not because of reductions in LBW births among blacks but because of increases in LBW births among whites. Research should be aimed at preventing preterm delivery and associated factors (e.g., infection, medical complications of pregnancy, or poor prenatal care), and the promotion of effective and culturally sensitive intervention programs (9). Strategies to reduce black-white disparities also should address disparate reductions in specific medical conditions that lead to infant death.

References

1. U.S. Department of Health and Human Services. Healthy People 2010 (conference ed, 2 vols). Washington, DC: U.S. Department of Health and Human Services, 2000.
2. Hoyert DL, Arias E, Smith BL, Murphy SL, Kochanek KD. Deaths: final data for 1999. Natl Vital Stat Rep 2001;49:1-114.
3. Martin JA, Hamilton BE, Ventura SJ, Menacker F, Park MM. Births: final data for 2000. Natl Vital Stat Rep 2002;50;1-102.
4. CDC. Preterm singleton births-United States, 1989-1996. MMWR 1999;48:185-9.
5. Martin JA, Park MM. Trends in twin and triplet births: 1980-97. Natl Vital Stat Rep 1999;47:1-20.
6. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med 2002;346:731-7.
7. Carmicheal SL, Iyasu S. Changes in the black-white infant mortality gap from 1983 to 1991 in the United States. Am J Prev Med 1998;15:220-7.
8. Schoendorf K, Hogue CJ, Kleinman J, Rowley DL. Mortality among infants of black as compared to white college graduates. N Engl J Med 1992;326:1522-6.
9. Hogan VK, Richardson JL, Ferre CD, Durant T, Boisseau M. A public health framework for addressing black and white disparities in preterm delivery. J Am Med Womens Assoc 2000;56:177-80.
10. Carmicheal SL, Iyasu S, Hatfield-Timajchy K. Cause-specific trends in neonatal mortality among black and white infants, United States, 1980-1995. Matern Child Health J 1998;2:67-76.

Update: AIDS — United States, 2000

Since the implementation of highly active antiretroviral therapy (HAART) in the United States in 1996, the number of persons diagnosed with acquired immunodeficiency syndrome (AIDS) and the number of deaths among persons with AIDS have declined substantially (1); as a result, the number of persons living with AIDS has increased. This report describes changes in AIDS incidence, prevalence, and deaths among persons with AIDS during January 1996-December 2000. Surveillance data indicate a slowing of declines in new AIDS diagnoses, continued declines in deaths among persons with AIDS, and increases in the number of persons living with AIDS. These findings indicate that AIDS continues to place a burden on the health-care system in the United States and that access to medical and preventive services must be improved to reduce the public health impact of AIDS.
AIDS surveillance is conducted in all states, the District of Columbia, and U.S. territories; cases are reported to CDC by using a standard definition and form. In addition, most states conduct human immunodeficiency virus (HIV) surveillance (2). To estimate AIDS incidence and deaths of persons with AIDS through December 2000, CDC adjusted reported cases for reporting delays (3). The HIV-exposure categories for cases reported initially without risk were estimated from historical patterns of risk ascertainment and reclassification. AIDS prevalence was estimated by subtracting cumulative deaths from cumulative AIDS incidence (4).
AIDS incidence increased rapidly throughout the 1980s, peaked in the early 1990s, and then declined (Figure 1). The peak of new diagnoses in 1993 was associated with expansion of the AIDS surveillance case definition (5). In 1996, sharp declines in AIDS incidence were observed for the first time; during 1998-1999, declines in AIDS incidence began to level. During 1999-2000, essentially no change in AIDS incidence was observed; an estimated 40,907 new AIDS cases were diagnosed in 1999 and an estimated 41,113 in 2000. During 1996-2000, AIDS incidence declined in the West; declined
and then leveled in the South, Midwest, and U.S. territories; and declined and then increased in the Northeast. During the same period, AIDS incidence declined sharply and then slowed among whites and declined more slowly and then leveled among blacks, Hispanics, and Asians/ Pacific Islanders; during 1998-1000, incidence increased among American Indians/ Alaska Natives from 152 in 1998 to 183 in 2000 (4). AIDS incidence declined sharply and then slowed among men who have sex with men (MSM) and injection-drug users (IDUs); incidence continued to decline among MSM who also were IDUs. Among persons exposed through heterosexual contact, incidence declined slowly during 1996-1998 and then increased from 10,258 in 1999 to 11,136 in 2000 (Figure 2).
During 1996-1997, the estimated number of deaths among persons with AIDS declined 42\%; during 1998-2000, declines were smaller (5\% during 1998-1999 and 10% during 1999-2000) (Table). During 1996-2000, the number of deaths declined in the Northeast, West, and Midwest; during 1996-1999, deaths declined in the South and U.S. territories, and then leveled during 1999-2000. The number of deaths declined in all racial/ethnic groups and among MSM, male and female IDUs, and MSM/IDUs. During 1996-1998, the number of deaths among men and women with AIDS attributed to heterosexual contact declined and then leveled during 1999-2000 (Table).

AIDS prevalence has increased steadily over time; as of December 31, 2000, an estimated 337,731 persons in the United States were living with AIDS (Figure 1). Of these, an estimated 139,522 (41%) were black, 127,838 (38\%) white, 65,991 (20\%) Hispanic, 2,841 (1\%) Asians/Pacific Islanders, and $1,180(<1 \%)$ American Indians/Alaska Natives. An estimated 129,333 (38\%) lived in the South, $99,482(29 \%)$ in the Northeast, $66,085(20 \%)$ in the West, 32,909 (10\%) in the Midwest, and 9,922 (3\%) in U.S. territories. Of the estimated 264,149 adult and adolescent (i.e., person aged ≥ 13 years) males living with AIDS, approximately 151,325 (57%) were MSM, 64,522 (24\%) were IDUs, and 20,528 (8\%) were MSM/IDUs; 23,333 (9\%) were reported without risk.

FIGURE 1. Estimated AIDS incidence* and deaths among persons with AIDS, by year of diagnosis or death and year-end prevalence - United States, 1981-2000

* Data were adjusted for delays in reporting of cases and deaths.

FIGURE 2. Estimated AIDS incidence* among men who have sex with men (MSM), injection drug-users (IDUs), MSM/IDUs, and persons exposed through heterosexual contact, by year of diagnosis - United States, 1981-2000

* Data were adjusted for delays in reporting; exposure categories were estimated for cases initially
exposed through heterosexual contact. Of the estimated 69,775 adult and adolescent women living with AIDS, 40,051 (57\%) were exposed through heterosexual contact, and 27,475 (39\%) were IDUs. An estimated 3,807 children aged <13 years were living with AIDS; of these, approximately 90% were infected perinatally.
Reported by: RM Klevens, JJ Neal, Div of HIVIAIDS Prevention, National Center for HIV, STD and TB Prevention, CDC.

TABLE. Estimated number of deaths among persons with AIDS, by selected characteristics and percentage change - United States, 1996-2000

Characteristic	1996	1997	$\begin{gathered} \hline \text { \% change } \\ \text { during } \\ \text { 1996-1997 } \end{gathered}$	1998	$\begin{gathered} \hline \text { \% change } \\ \text { during } \\ \text { 1997-1998 } \end{gathered}$	1999	$\begin{gathered} \text { \% change } \\ \text { during } \\ \text { 1998-1999 } \end{gathered}$	2000	$\begin{gathered} \hline \text { \% change } \\ \text { during } \\ 1999-2000 \end{gathered}$
Region*									
Northeast	11,903	6,928	-42	5,740	-17	5,864	2	4,744	-19
Midwest	4,030	2,294	-43	1,932	-16	1,669	-14	1,539	-8
South	13,594	8,299	-39	7,216	-13	6,850	-5	6,809	-1
West	7,092	3,670	-48	3,168	-14	2,890	-9	2,347	-19
U.S. territories	1,543	976	-37	786	-20	709	-10	730	3
Race/Ethnicity									
White	14,703	7,372	-50	6,183	-16	5,560	-10	4,829	-13
Black	15,983	10,363	-35	8,977	-13	8,858	-1	8,156	-8
Hispanic ${ }^{\dagger}$	7,041	4,174	-41	3,469	-17	3,358	-3	3,026	-10
Asian/Pacific Islander	293	155	-47	127	-18	119	-6	96	-19
American Indian/Alaska Native	131	94	-28	79	-16	75	-5	57	-24
Exposure category§									
MSM	16,842	8,692	-48	7,136	-18	6,440	-10	5,641	-12
M-IDUs	8,648	5,421	-37	4,682	-14	4,409	-6	3,847	-13
MSM/IDUs	2,591	1,460	-44	1,281	-12	1,254	-2	1,181	-6
M-HET	2,137	1,494	-30	1,263	-16	1,311	4	1,279	-2
Male subtotal ${ }^{1 /}$	30,969	17,477	-44	14,638	-16	13,687	-7	12,186	-11
F-IDUs	3,301	2,160	-35	1,954	-10	2,027	4	1,823	-10
F-HET	3,453	2,306	-33	2,073	-10	2,099	1	2,025	-4
Female subtotal ${ }^{11}$	7,192	4,690	-35	4,204	-10	4,294	2	3,983	-7
Pediatric	430	219	-49	125	-43	123	-2	76	-38
Total ${ }^{\text {l }}$	38,161	22,167	-42	18,842	-15	17,982	-5	16,169	-10

* Northeast=Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; Midwest=Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; South=Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia; West=Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming.
${ }_{\S}^{\dagger}$ Persons of Hispanic origin might be of any race.
${ }^{\S}$ MSM=men who have sex with men; IDUs=injection-drug users; M-IDUs=male IDUs; M-HET=male heterosexuals; F-IDUs=female IDUs; F-HET=female ${ }_{q}$ heterosexuals.
${ }^{\mathbb{1}}$ Includes persons for whom data on sex, race/ethnicity, region, or exposure category are missing.

Editorial Note: During 1996-2000, AIDS incidence declined or leveled in most geographic regions and among most racial/ ethnic groups and HIV-exposure categories; incidence increased slightly among persons exposed heterosexually and among persons living in the Northeast (4). Although the number of deaths among persons with AIDS declined during 1996-2000, the magnitude of decline varied by region and exposure category; the number of deaths declined among persons with AIDS in all racial/ethnic groups.
Declines in AIDS incidence and deaths are associated primarily with the widespread use of HAART, which slows progression of HIV infection to AIDS and of AIDS to death $(1,6)$. Because effective therapy increases AIDS-free survival rates among persons living with HIV, new AIDS diagnoses increasingly represent persons who have failed HAART or have limited access to or use of HIV testing or of appropriate medical care and social services. Monitoring the entire spectrum of HIV disease, including the number of new HIV infections, progression of HIV infection to AIDS, and deaths among persons with AIDS, is critical for evaluating prevention efforts aimed at reducing the number of new HIV infections
and preventing morbidity and mortality among persons living with HIV.
As of December 2000, an estimated 340,000 persons in the United States were living with AIDS. Increasing proportions of persons living with AIDS are black or Hispanic, female, residents of the South, and persons exposed to HIV through heterosexual contact. This finding is consistent with other studies that indicate HIV and AIDS affect disproportionately subgroups that traditionally have had limited access to medical and preventive services because of poverty and social disadvantage (1). This is particularly important for interpreting trends in AIDS because access to high-quality medical services facilitates early treatment of HIV infection and can delay the onset of AIDS. Many persons in historically disadvantaged groups might lack access to or not seek adequate health-care services. An estimated one fourth of persons living with HIV in the United States are not aware of their infection and their need for services, and one third of persons who are aware of their infection are not receiving care (7). Efforts to meet the preventive service and health-care needs of persons living with HIV/AIDS are imperative to improving their
quality of life and preventing further transmission of HIV. For the United States to meet the national goal of reducing new HIV infections by half by 2005 (8), improved access to and use of HIV testing and other preventive services, access to care and comprehensive services, and improvements in HIV therapies (1) are required.

References

1. Karon JM, Fleming PL, Steketee RW, De Cock KM. HIV in the United States at the turn of the century; an epidemic in transition. Am J Public Health 2001;91:1060-8.
2. CDC. Guidelines for national human immunodeficiency virus case surveillance, including monitoring for human immunodeficiency virus infection and acquired immunodeficiency syndrome. MMWR 1999;48(No. RR-13).
3. Green T. Using surveillance data to monitor trends in the AIDS epidemic. Statist Med 1998;17:143-54.
4. CDC. HIV/AIDS surveillance report, 2001;13(2).
5. CDC. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adults and adolescents. MMWR 1992;41(No. RR-17).
6. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N Engl J Med 1997;337:725-33.
7. Fleming P, Byers RH, Sweeney PA, Daniels D, Karon JM, Janssen RS. HIV prevalence in the United States, 2000. Seattle, Washington: Presented at the 9th Conference on Retroviruses and Opportunistic Infections, 2002.
8. CDC. HIV prevention strategic plan through 2005. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2001. Available at http://www.cdc.gov/nchstp/od/hiv_plan/default.htm.

Diagnosis and Reporting of HIV and AIDS in States with HIV/AIDS Surveillance - United States, 1994-2000

Before advances in therapy, public health surveillance of acquired immunodeficiency syndrome (AIDS) provided reliable population-based information that represented trends in the incidence of human immunodeficiency virus (HIV) infection. However, since 1996, highly active antiretroviral therapy (HAART) has prolonged substantially the interval between the diagnosis of HIV infection and the development of AIDS, which has diminished the capacity of AIDS surveillance alone to monitor the underlying patterns of HIV transmission (1). As a result, CDC recommends that states conduct HIV-infection reporting in addition to AIDS surveillance (2). This report describes trends in newly diagnosed cases of HIV infection in 25 states* that conducted name-based HIV/AIDS

[^0]surveillance during 1994-2000 (3). The findings indicate that the number of diagnosed HIV infections declined in these states during 1994-1997 and remained constant during 19982000. HIV/AIDS surveillance should be conducted by all states to fully characterize persons infected with HIV who need treatment and prevention services.
Since 1994, CDC has supported uniform HIV surveillance for all 50 states and territories. The 25 states included in this analysis have collected HIV surveillance data since 1994 and submitted case reports to CDC after removal of personal identifiers (3). Cases were divided into two categories: persons in whom HIV infection was diagnosed without an AIDS diagnosis and persons in whom HIV infection was diagnosed when AIDS was diagnosed (4). Data with or without AIDS were analyzed by the earliest date of diagnosis of HIV for 19942000. HIV/AIDS data were adjusted for delays in reporting of cases and deaths. Estimates for the mode of exposure were adjusted for anticipated reclassification of cases reported originally without this information (5).
During 1994-2000, HIV infection was diagnosed in 128,813 persons in the 25 states. Of these, the initial diagnosis was HIV infection with AIDS in 33,144 (26\%) and HIV infection without AIDS in 95,699 (74\%) (Table). The number of persons in whom HIV infection without AIDS was the initial diagnosis declined 21% (from 15,945 in 1994 to 12,612 in 2000), and the number of persons in whom HIV infection with AIDS was the initial diagnosis declined 31% (from 5,760 in 1994 to 3,987 in 2000). However, during 1998-2000, the number of diagnosed cases of HIV infection with and without AIDS remained constant (Table).
During 1994-2000, the proportion of persons in whom HIV infection with AIDS was newly diagnosed remained relatively stable (27% in 1994 and 24% in 2000). However, the proportion of HIV-infected persons who also had AIDS varied by demographic subgroup and mode of exposure. Persons with AIDS at the time of initial HIV diagnosis were more likely to be male and older (Table). Asians/Pacific Islanders (34\%), non-Hispanic whites (29\%), and Hispanics (29\%) were more likely than non-Hispanic blacks (23%) and American Indians/Alaska Natives (22\%) to have AIDS at the time of initial HIV diagnosis. Of the 128,813 HIV infections with and without AIDS, the majority of newly diagnosed HIV infections were among non-Hispanic blacks (70,990 [55\%]). When evaluated by mode of exposure, men who have sex with men (MSM) accounted for the largest proportion (15,694 [47\%]) of persons with AIDS at the time of initial HIV diagnosis, followed by persons exposed through injection-drug use (IDU) (7,913 [24\%]).
Trends in the number of persons who had HIV infection newly diagnosed with and without AIDS varied substantially

TABLE. Number and percentage of persons in whom HIV infection was diagnosed with and without AIDS, by selected characteristics - 25 states* with HIV reporting, 1994-2000

Characteristic	HIV diagnosed without AIDS		HIV diagnosed with AIDS ${ }^{\dagger}$		Total		\% diagnosed with AIDS ${ }^{\dagger}$
	No.	(\%)	No.	(\%)	No.	(\%)	
Sex							
Male	68,120	(71)	26,687	(81)	94,807	(74)	28
Female	27,549	(29)	6,457	(19)	34,006	(26)	19
Age group (yrs)							
<13	1,073	(1)	224	(1)	1,297	(1)	17
13-24	13,462	(14)	1,175	(4)	14,637	(11)	8
25-34	35,853	(38)	10,023	(30)	45,876	(36)	29
35-44	30,752	(32)	13,325	(40)	44,077	(34)	30
45-54	11,043	(12)	5,971	(18)	17,014	(13)	35
55-64	2,693	(3)	1,798	(5)	4,491	(4)	40
≥ 65	792	(1)	629	(2)	1,421	(1)	44
Race/Ethnicity							
White, non-Hispanic	32,378	(34)	13,469	(41)	45,847	(36)	29
Black, non-Hispanic	54,590	(57)	16,400	(50)	70,990	(55)	23
Hispanic§	6,837	(7)	2,849	(9)	9,686	(8)	29
Asian/Pacific Islander	411	(1)	212	(1)	623	(<1)	34
American Indian/Alaska Native	654	(1)	188	(1)	842	(1)	22
Unknown	799	(1)	27	(<1)	826	(1)	3
Exposure category							
Men who have sex with men	39,020	(41)	15,694	(47)	54,714	(43)	29
Injection-drug use	21,514	(23)	7,913	(24)	29,427	(23)	27
Men who have sex with men and inject drugs	4,666	(5)	1,540	(5)	6,206	(5)	25
Heterosexual contact	28,223	(30)	7,085	(21)	35,308	(27)	20
Other	2,246	(2)	912	(3)	3,158	(3)	29
Year of diagnosis							
1994	15,945	(17)	5,760	(17)	21,705	(17)	27
1995	15,016	(16)	5,724	(17)	20,740	(16)	28
1996	14,102	(15)	5,131	(16)	19,232	(15)	27
1997	13,564	(14)	4,650	(14)	18,214	(14)	26
1998	12,539	(13)	4,060	(12)	16,599	(13)	25
1999	11,892	(12)	3,832	(12)	15,725	(12)	24
2000	12,612	(13)	3,987	(12)	16,598	(13)	24
Total ${ }^{1}$	95,669	(74)	33,144	(26)	128,813	(100)	26

* Alabama, Arizona, Arkansas, Colorado, Idaho, Indiana, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nevada, New Jersey, North Carolina, North Dakota, Ohio, Oklahoma, South Carolina, South Dakota, Tennessee, Utah, Virginia, West Virginia, Wisconsin, and Wyoming. All estimates are \dagger adjusted for reporting delays and no reported mode of exposure.
${ }^{\dagger}$ AIDS was diagnosed within 1 calendar month of HIV diagnosis.
${ }^{\S}$ Persons of Hispanic origin might be of any race.
${ }^{1}$ Includes persons for whom data on sex, age, race/ethnicity, region, or vital status are missing.
by age at diagnosis and mode of exposure (Figures 1 and 2). The largest decline in cases occurred among persons aged 25-44 years (from 15,809 in 1994 to 10,826 in 2000).

The number of newly diagnosed HIV infections with and without AIDS attributed to MSM and injection-drug use (IDU) declined 22% and 44%, respectively (Figure 2). However, the number of diagnosed infections attributed to heterosexual contact increased 9% (from 4,905 in 1994 to 5,325 in 2000).
Reported by: MT McKenna, MD, RM Klevens, DDS, PL Fleming, PhD, JJ Neal, PhD, Div of HIVIAIDS Prevention, National Center for HIV, STD and TB Prevention, CDC.

Editorial Note: Surveillance data on HIV and AIDS facilitates a more complete assessment of HIV transmission patterns. Surveillance data on HIV diagnoses with and without AIDS from these 25 states indicate that during 1994-2000, the number of persons in whom HIV infection was newly diagnosed declined during 1994-1997 and then stabilized during 1998-2000. The majority of the decline occurred among persons aged 25-44 years. Persons in this age group were affected more by the epidemic during the 1980s and 1990s; accordingly, these decreases probably reflect the declines from the peak incidence during the late 1980s (1). The stabilization of case counts in every age group during

FIGURE 1. Estimated number of HIV diagnoses,* by age group and year of diagnosis - 25 states, ${ }^{\dagger}$ 1994-2000

*Includes all new HIV diagnoses with and without AIDS. Adjusted for reporting delays and redistribution of exposure for cases reported without information on mode of exposure.
${ }^{\dagger}$ Alabama, Arizona, Arkansas, Colorado, Idaho, Indiana, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nevada, New Jersey, North Carolina, North Dakota, Ohio, Oklahoma, South Carolina, South Dakota, Tennessee, Utah, Virginia, West Virginia, Wisconsin, and Wyoming.

FIGURE 2. Estimated number of HIV diagnoses* in men who have sex with men (MSM), injection-drug users (IDUs), MSM/ IDUs and persons exposed through heterosexual contact, by year of diagnosis - 25 states, ${ }^{\dagger}$ 1994-2000

*Includes all new HIV diagnoses with and without AIDS. Adjusted for reporting delays and redistribution of exposure for cases reported without information on mode of exposure.
${ }^{\dagger}$ Alabama, Arizona, Arkansas, Colorado, Idaho, Indiana, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nevada, New Jersey, North Carolina, North Dakota, Ohio, Oklahoma, South Carolina, South Dakota, Tennessee, Utah, Virginia, West Virginia, Wisconsin, and Wyoming.

1999-2000 suggests that earlier declines in newly diagnosed HIV infections have abated. These trends should continue to be monitored, and surveillance systems that collect information systematically on newly diagnosed HIV infections should be expanded to other states to characterize persons needing treatment and prevention services (3).

Trends in the number of HIV diagnoses can be influenced by changes in testing patterns for HIV and increases or decreases in HIV transmission. Data from national surveys and publicly funded counseling and testing sites indicate that testing rates have remained relatively unchanged during the late 1990s (2,6). HIV-infection surveillance will be facilitated by new technologies that can identify patients infected recently (i.e., ≤ 6 months) (7). CDC is initiating activities to integrate these new laboratory technologies into routine HIVinfection surveillance.
A total of 33 states have name-based HIV-infection reporting. An additional 14 states have instituted non-name or codebased reporting of diagnosed HIV infections. Variable combinations of information about the patient (e.g., portions of the name, birth date, sex, and race) are used to create the codes so reports about the patient can be linked to avoid duplicate reporting and to follow clinical outcomes over time. Systems that use name-based reporting of AIDS are at least 90% complete (8). On the basis of performance guidelines for HIV-infection reporting, CDC is assisting states to assess the completeness, timeliness, validity, and usefulness of nameand code-based reporting systems (2).
The findings in this report are subject to at least three limitations. First, a limited number of states were included in this analysis; 24% of all AIDS cases diagnosed in the United States during 1994-2000 occurred in the 25 states. Second, the reporting on mode of exposure has become more incomplete during the surveillance period; therefore, analysis of mode of exposure requires greater statistical adjustment. Verification of the validity of these modeled estimates can be achieved by sampling a subset of representative cases for intensive followup. Third, HIV reporting might be incomplete, and duplicate reporting of persons in whom HIV infection was first diagnosed in one state and who are then diagnosed with AIDS in another state might be occurring.
The proportion of HIV-infected persons who had HIV diagnosed at time of AIDS diagnosis remained relatively constant in these states. An estimated $25 \%(180,000-280,000$ persons) of HIV-infected persons in the United States are not aware of their serostatus (9). The majority of infections were diagnosed in non-Hispanic blacks, and a substantial number were reported in Hispanics. HIV affects disproportionately populations that traditionally have limited access to or use of medical and preventive services because of socioeconomic disadvantage and other factors (1). If HIV-testing strategies had effectively penetrated into high-risk populations (e.g., at-risk racial/ethnic minorities and young MSM) during this surveillance period, a substantially smaller proportion of the HIV diagnoses would have been identified with AIDS. A CDC
prevention strategy, Serostatus Approach to Fighting the Epidemic (SAFE), encourages counseling and testing for persons who are at high risk for HIV infection, links recently diagnosed HIV-infected persons to appropriate care, and provides persons with prevention services to facilitate the adoption of less risky behaviors (10). Greater emphasis should be placed on counseling and testing efforts in communities in which racial/ethnic minorities are at risk for HIV.

References

1. Karon JM, Fleming PL, Steketee RW, De Cock KM. HIV in the United States at the turn of the century: an epidemic in transition. Am J Public Health 2001;91:1060-8.
2. CDC. Guidelines for national human immunodeficiency virus case surveillance, including monitoring for human immunodeficiency virus infection and acquired immunodeficiency syndrome. MMWR 1999;48(No. RR-13).
3. CDC. Diagnosis and reporting of HIV and AIDS in states with integrated HIV and AIDS surveillance-United States, January 1994-June 1997. MMWR 1998;47:309-14.
4. CDC. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR 1992;41(No. RR-17).
5. Green T. Using surveillance data to monitor trends in the AIDS epidemic. Statist Med 1998;17:143-54.
6. Anderson JE, Carey JW, Taveras S. HIV testing among the general U.S. population and persons at increased risk: information from national surveys, 1987-1996. Am J Public Health 2000;90:1089-95.
7. Rutherford GW, Schwarcz SK, McFarland W. Surveillance for incident HIV infection: new technology and new opportunities. J Acquir Immune Defici Syndr Hum Retroviro 2000;25:S115-S119.
8. Klevens RM, Fleming PL, Li J, et al. The completeness, validity, and timeliness of AIDS surveillance data. Ann Epidemiol 2001;11:443-9.
9. Fleming P, Byers RH, Sweeney PA, Daniels D, Karon JM, Janssen RS. HIV prevalence in the United States, 2000. Seattle, Washington: Presented at the 9th Conference on Retroviruses and Opportunistic Infections, 2002.
10. Janssen RS, Holtgrave DR, Valdiserri RO, Shepherd M, Gayle HD, De Cock KM. The serostatus approach to fighting the HIV epidemic: prevention strategies for infected individuals. Am J Public Health 2001;91:1019-24.

Acknowledgments

This report is based on data contributed by state and local health departments.

Weekly Update: West Nile Virus Activity - United States, July 3-9, 2002

This report summarizes West Nile virus (WNV) surveillance data reported to CDC through ArboNET and verified by states and other jurisdictions as of July 9, 2002.

During the reporting week of July 3-9, the first verified human case of WNV encephalitis in 2002 was reported from Louisiana in a man aged 78 years. During the same period,

WNV infections were reported in 31 dead crows, 75 other dead birds, seven sentinel chicken flocks, four horses, one wild bird that was caught and released, and one mosquito pool.

During 2002, in addition to the one human case of WNV encephalitis, a total of 116 dead crows and 151 other dead birds with WNV infection were reported from 18 states and the District of Columbia (Figure); 14 WNV infections in horses were reported from three states (Florida, Kentucky, and Louisiana). During 2002, WNV seroconversions were reported in 10 sentinel chicken flocks from Florida; WNV seropositivity was reported from two states (Indiana and Louisiana) in two wild birds that were caught and released; and seven WNV-positive mosquito pools were reported from three states (Illinois, New Jersey, and Ohio).

Additional information about WNV activity is available at http://www.cdc.gov/ncidod/dvbid/westnile/index.htm and http://cindi.usgs.gov/hazard/event/west_nile/west_nile.html.

FIGURE. Areas reporting West Nile virus (WNV) activity United States, 2002*

* As of July 9, 2002.

Notice to Readers

Resumption of Routine Schedule for Diphtheria and Tetanus Toxoids and

 Acellular Pertussis Vaccine and for Measles, Mumps, and Rubella VaccineSupplies of diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccine and measles, mumps, and rubella (MMR) vaccine in the United States have become sufficient to permit the resumption of the routine schedule for DTaP and MMR use as recommended by the Advisory Committee on Immunization Practices (ACIP) ($1-3$). However, healthcare providers should be advised that, for the next 2 months,
supply might not be adequate for the initiation of ambitious recall or special initiative programs. With increases in national inventory, more comprehensive recall programs can be established. Child care and school attendance provisions requiring children to receive a DTaP booster and a second dose of MMR vaccine at age 4-6 years can be reinstituted.

DTaP Vaccine

Three DTaP vaccines are distributed currently in the United States: Tripedia ${ }^{\circledR}$ (Aventis Pasteur, Swiftwater, Pennsylvania), Infanrix ${ }^{\text {TM }}$ (GlaxoSmithKline, Philadelphia, Pennsylvania), and DAPTACEL ${ }^{\text {TM }}$ (Aventis Pasteur, Toronto, Ontario). The Food and Drug Administration (FDA) approved DAPTACEL ${ }^{\text {TM }}$ for use in the United States on May 14, 2002 (4).
During the DTaP vaccine shortage beginning in 2000 (5), ACIP recommended that health-care providers vaccinate infants with the initial 3 DTaP doses, if they did not have insufficient supply of DTaP to vaccinate all children in their practice. ACIP also recommended deferral of the fourth and fifth DTaP doses if supplies were still inadequate (G). Supplies are now adequate to resume the full 5 -dose schedule for DTaP vaccine (1,3).

MMR Vaccine

A temporary shortage of MMR vaccine in the United States resulted from a voluntary interruption of manufacturing operations of Merck \& Co., Inc., the only manufacturer of this vaccine in the United States (7). During the vaccine shortage, ACIP recommended deferral of the second dose of MMR vaccine at age $4-6$ years if health-care providers were unable to obtain sufficient amounts of vaccine. The first dose at age 12-15 months was not to be delayed because of the severity of measles in young children (7). Supplies are now adequate to resume the second dose of MMR vaccine $(2,3)$.

Vaccine Supply

Health-care providers should review the vaccination status of their patients and administer DTaP and MMR vaccines, as appropriate. For at least the next 2 months, providers should order DTaP and MMR vaccine in amounts sufficient for a ≤ 30-day supply to ensure that current supplies can meet requests. Recall or special initiative programs can be instituted when DTaP and MMR vaccine supply improves further but should be deferred during this transition period. However, if children who need these vaccines seek medical care for other reasons, they should be administered vaccine provided no contraindications exist. Furthermore, vaccine should be offered to children who need vaccination and whose parents requested vaccination. CDC will continue to monitor DTaP and MMR vaccine supply and, if necessary, allocate vaccine. Updates regarding vaccine supply and shortages can be found at http://www.cdc.gov/nip/.

References

1. CDC. Pertussis vaccination: use of acellular pertussis vaccine among infants and young children-recommendations of the Advisory Committee on Immunization Practices. MMWR 1997;46(No. RR-7).
2. CDC. Measles, mumps, and rubella-vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1998;47(No. RR-8).
3. CDC. Recommended childhood immunization schedule-United States, 2002. MMWR 2002;51:31-3.
4. CDC. Food and Drug Administration approval of a fifth acellular pertussis vaccine for use among infants and young children-United States, 2002. MMWR 2002;51:574.
5. CDC. Update on the supply of tetanus and diphtheria toxoids and of diphtheria and tetanus toxoids and acellular pertussis vaccine. MMWR 2001;50:189-90.
6. CDC. Update: supply of diphtheria and tetanus toxoids and acellular pertussis vaccine. MMWR 2002;50:1159.
7. CDC. Shortage of varicella and measles, mumps and rubella vaccines and interim recommendations from the Advisory Committee on Immunization Practices. MMWR 2002;51:190-7.

FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals ending July 6, 2002, with historical data

 is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary of provisional cases of selected notifiable diseases, United States, cumulative, week ending July 6, 2002 (27th Week)*

		$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	Encephalitis: West Nile ${ }^{\dagger}$ Hansen disease (leprosy) ${ }^{\dagger}$ Hantavirus pulmonary syndrome ${ }^{\dagger}$ Hemolytic uremic syndrome, postdiarrheal ${ }^{\dagger}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \end{aligned}$
Anthrax Botulism:	foodborne infant other (wound \& unspecified)	1	1		1	-
		8	10		39	39
		32	51		7	5
		9	6		69	58
Brucellosis ${ }^{\dagger}$		38	62	HIV infection, pediatric ${ }^{\text {¢ }}$	31	91
Chancroid		29	22	Plague	-	2
Cholera		5	2	Poliomyelitis, paralytic	-	-
Cyclosporiasis ${ }^{\dagger}$		76	61	Psittacosis ${ }^{\dagger}$	12	7
Diphtheria		-	1	Q fever ${ }^{+}$	17	11
Ehrlichiosis:	human granulocytic (HGE) ${ }^{\dagger}$	86	49	Rabies, human	1	-
	human monocytic (HME) ${ }^{\dagger}$	44	41	Streptococcal toxic-shock syndrome ${ }^{\dagger}$	38	52
	other and unspecified	2	2	Tetanus	7	22
Encephalitis:	California serogroup viral ${ }^{\dagger}$	6	4	Toxic-shock syndrome	62	68
	eastern equine ${ }^{\dagger}$	1	-	Trichinosis	9	10
	Powassan ${ }^{\dagger}$	-	-	Tularemia ${ }^{\text {+ }}$	22	49
	St. Louis ${ }^{\dagger}$ western equine	-	-	Yellow fever	1	-

[^1]TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 $\underline{(27 t h \text { Week)* }}$

Reporting Area	AIDS		Chlamydia ${ }^{\dagger}$		Cryptosporidiosis		Escherichia coli					
			0157:H7	Shiga Toxin Positive, Serogroup non-0157								
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002^{\text {B }} \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	16,795	20,471	366,921	388,713			998	1,009	874	967	35	43
NEW ENGLAND	637	731	13,287	11,200	56	47	68	103	6	19		
Maine	19	20	742	636	2	3	3	12	-	-		
N.H.	17	15	788	688	13	2	6	12	-	3		
Vt.	6	10	332	309	13	13	2	4	-	-		
Mass.	318	401	5,470	4,300	14	22	33	56	2	4		
R.I.	50	51	1,427	1,432	9	3	5	5	-	-		
Conn.	227	234	4,528	3,835	5	4	19	14	4	12		
MID. ATLANTIC	3,498	5,435	39,080	41,774	113	138	63	71	-	-		
Upstate N.Y.	259	807	8,331	6,649	34	40	51	44	-	-		
N.Y. City	1,838	3,022	14,691	15,351	53	58	3	6	-	-		
N.J.	668	920	3,385	6,959	7	7	9	21	-	-		
Pa .	733	686	12,673	12,815	19	33	N	N	-	-		
E.N. CENTRAL	1,779	1,406	57,208	72,149	253	341	219	223		3		
Ohio	316	234	11,192	18,678	67	55	46	55	1	2		
Ind.	207	163	8,339	8,018	21	30	20	31	-	-		
III.	815	670	15,655	21,527	38	38	65	59	-	-		
Mich.	358	261	15,939	15,582	52	73	35	25	-	1		
Wis.	83	78	6,083	8,344	75	145	53	53	-	-		
W.N. CENTRAL	270	449	18,315	19,940	112	91	128	113	4	2		
Minn.	56	81	4,831	4,053	51	32	43	42	3	-		
Iowa	42	47	629	2,437	11	23	30	17	-	-		
Mo.	117	209	7,359	7,067	16	18	23	21	N	N		
N. Dak.	-	1	469	533	6	4	3	1	-	-		
S. Dak.	2	18	1,126	914	5	5	13	7	1	1		
Nebr.	23	47	589	1,783	16	9	9	15	-	1		
Kans.	30	46	3,312	3,153	7	-	7	10	-	-		
S. ATLANTIC	5,478	6,116	72,268	74,532	161	162	94	84	15	12		
Del.	96	115	1,363	1,491	1	1	4	1	-	-		
Md.	822	753	7,540	7,829	8	26	3	5	-	-		
D.C.	266	460	1,694	1,750	3	9	-	-	-	-		
Va .	350	541	8,230	8,987	4	9	24	21	1	2		
W. Va.	41	47	1,168	1,214	2	1	2	3	-	-		
N.C.	418	379	12,175	11,284	21	16	17	26	-	-		
S.C.	433	338	6,642	8,132	2	1	-	2	-	-		
Ga.	922	751	13,764	15,629	80	64	31	15	9	6		
Fla.	2,130	2,732	19,692	18,216	40	35	13	11	5	4		
E.S. CENTRAL	768	954	25,736	25,717	71	19	42	49	-	-		
Ky.	122	201	4,421	4,552	1	3	13	22	-	-		
Tenn.	341	271	8,139	7,567	38	3	19	18	-	-		
Ala.	144	224	7,932	7,234	28	6	5	6	-	-		
Miss.	161	258	5,244	6,364	4	7	5	3	-	-		
W.S. CENTRAL	1,834	2,025	53,197	55,126	13	28	10	109	-	-		
Ark.	123	104	3,177	3,982	4	3	2	4	-	-		
La.	442	459	9,557	9,163	4	7	,	3	-	-		
Okla.	95	106	4,979	5,606	5	6	8	13	-	-		
Tex.	1,174	1,356	35,484	36,375	-	12	-	89	-	-		
MOUNTAIN	565	713	23,705	22,660	72	57	92	91	5	3		
Mont.	6	12	1,107	1,119	4	5	9	6	-	-		
Idaho	10	15	1,294	909	17	7	6	13	2	2		
Wyo.	2	1	453	412	6	1	2	4	1	-		
Colo.	108	153	7,096	6,304	19	17	31	34	1	1		
N. Mex.	34	59	3,234	3,089	7	11	4	6	1	-		
Ariz.	247	281	7,334	7,480	10	3	11	11	-	-		
Utah	30	62	1,137	782	6	10	19	11	-	-		
Nev.	128	130	2,050	2,565	3	3	10	6	-	-		
PACIFIC	1,966	2,642	64,125	65,615	147	126	158	124	4	4		
Wash.	235	285	7,251	7,065	24	U	16	29	-	-		
Oreg.	181	110	3,408	3,684	21	14	44	21	4	4		
Calif.	1,509	2,205	49,583	51,447	101	109	74	65	-	-		
Alaska	9	14	1,775	1,401	1	$\overline{-}$	4	2	-	-		
Hawaii	32	28	2,108	2,018	1	3	20	7	-	-		
Guam	2	8	-	213	-	-	N	N	-	-		
P.R.	503	578	1,576	1,454	-	-	-	-	-	-		
V.I.	57	2	30	89	-	-	-	-				
Amer. Samoa	U	U	U	U	U	U	U	U	U	U		
C.N.M.I.	2	U	110	U	-	U	-	U	-	U		

N : Not notifiable. U: Unavailable. -: No reported cases. C.N.M.I.: Commonwealth of Northern Mariana Islands.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).
${ }^{+}$Chlamydia refers to genital infections caused by C. trachomatis.
§ Updated monthly from reports to the Division of HIV/AIDS Prevention - Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention. Last update May 26, 2002.

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 $\underline{(27 t h \text { Week)* }}$

Reporting Area	Escherichia coli		Giardiasis Cum. 2002	Gonorrhea		Haemophilus influenzae, Invasive				
			All Ages, All Serotypes		Age < 5 Years					
	Shiga Toxin Positive, Not Serogrouped									
	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \end{aligned}$
UNITED STATES	15	4	6,854	154,660	175,834	848	857	12	15	
NEW ENGLAND	-	1	723	3,820	3,010	61	54	-	1	
Maine	-	-	80	54	70	1	1	-	-	
N.H.	-	-	24	62	78	5	-	-	-	
Vt.	-	1	54	45	39	5	2	-	-	
Mass.	-	-	346	1,699	1,275	28	33	-	1	
R.I.	-	-	61	462	360	9	2	-	-	
Conn.	-	-	158	1,498	1,188	13	16	-	-	
MID. ATLANTIC	-	-	1,533	17,965	19,367	152	121	3	3	
Upstate N.Y.	-	-	516	4,261	4,100	68	39	2	-	
N.Y. City	-	-	620	6,011	6,357	34	33	.	-	
N.J.	-	-	144	2,829	2,671	31	28	-	-	
Pa .	-	-	253	4,864	6,239	19	21	1	3	
E.N. CENTRAL	7	2	1,273	26,993	36,966	140	149	2	1	
Ohio	7	2	393	6,106	10,034	54	47	-	1	
Ind.	-	-	-	3,622	3,326	28	26	1	-	
III.	-	-	296	8,478	11,592	43	50	-	-	
Mich.	-	-	389	6,900	9,091	9	8	1	-	
Wis.	-	-	195	1,887	2,923	6	18	-	-	
W.N. CENTRAL	-	-	810	7,486	8,173	29	36	-	1	
Minn.	-	-	294	1,418	1,269	18	18	-	-	
Iowa	-	-	113	170	595	1	-	-	-	
Mo.	N	N	234	4,266	4,173	8	12	-	-	
N. Dak.	,	N	11	27	18	-	4	-	-	
S. Dak.	-	-	32	133	143	-	-	-	-	
Nebr.	-	-	52	137	618	-	1	-	1	
Kans.	-	-	74	1,335	1,357	2	1	-	-	
S. ATLANTIC	-	-	1,199	41,975	45,637	210	215	1	1	
Del.	-	-	23	830	846	-	-	-	-	
Md.	-	-	47	4,162	4,464	48	56	1	-	
D.C.	-	-	20	1,408	1,507	-	-	-	-	
Va.	-	-	105	5,190	4,836	15	18	-	-	
W. Va.	-	-	20	494	319	6	8	-	1	
N.C.	-	-		8,178	8,785	21	30	-	-	
S.C.	-	-	30	3,902	6,096	11	4	-	-	
Ga.	-	-	465	7,519	8,467	64	57	-	-	
Fla.	-	-	489	10,292	10,317	45	42	-	-	
E.S. CENTRAL	-	1	157	14,591	16,444	30	56	1	-	
Ky.	-	1	-	1,751	1,754	2	2	-	-	
Tenn.	-	-	70	4,601	4,961	15	27	-	-	
Ala.	-	-	87	5,103	5,631	8	25	1	-	
Miss.	-	-	-	3,136	4,098	5	2	-	-	
W.S. CENTRAL	-	-	76	23,366	26,715	33	32	2	1	
Ark.	-	-	63	1,776	2,497	1	-	-	-	
La.	-	-	1	5,931	6,387	2	6	-	-	
Okla.	-	-	12	2,158	2,530	28	25	-	-	
Tex.	-	-	.	13,501	15,301	2	1	2	1	
MOUNTAIN	8	-	629	4,961	5,298	115	96	2	3	
Mont.		-	34	54	67			-	-	
Idaho	-	-	42	40	41	2	1	-	-	
Wyo.		-	11	31	32	1	-	-	-	
Colo.	8	-	210	1,704	1,614	21	26	-	-	
N. Mex.	-	-	72	623	494	18	14		-	
Ariz.	-	-	84	1,785	2,073	54	40	1	1	
Utah	-	-	111	107	66	14	5	,	-	
Nev.	-	-	65	617	911	5	10	1	2	
PACIFIC	-	-	454	13,503	14,224	78	98	1	4	
Wash.	-	-	173	1,443	1,505	2	1	1	-	
Oreg.	-	-	187	412	583	38	30	-	-	
Calif.	-	-	-	11,044	11,615	12	44	-	4	
Alaska	-	-	45	303	193	1	3	-	-	
Hawaii	-	-	49	301	328	25	20	-	-	
Guam	-	-	-	-	24	-	-	-	-	
P.R.	-	-	7	237	336	-	1	-	-	
V.I.	-	-	-	17	14	-	,	-	-	
Amer. Samoa	U	U	U	U	U	U	U	U	U	
C.N.M.I.	U	U	U	10	U	U	U	U	U	

N: Not notifiable. U:Unavailable. - : No reported cases.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 $\underline{(27 t h \text { Week)* }}$

Reporting Area	Haemophilus influenzae, Invasive				Hepatitis (Viral, Acute), By Type					
	Age <5 Years									
	Non-Serotype B		Unknown Serotype		A		B		C; Non-A, Non-B	
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	134	146	11	16	4,278	4,582	3,206	3,528	1,662	2,155
NEW ENGLAND	7	10	-	-	178	248	107	68	18	26
Maine	-	-	-	-	6	5	4	5	-	-
N.H.	-	-	-	-	10	6	10	10	-	-
Vt.	-	-	-	-	1	6	2	5	11	6
Mass.	4	7	-	-	81	95	56	12	7	20
R.I.	-	-	-	-	25	11	17	12	-	-
Conn.	3	3	-	-	55	125	18	24	-	-
MID. ATLANTIC	21	20	-	2	530	597	719	693	803	615
Upstate N.Y.	8	6	-	1	104	134	75	65	29	18
N.Y. City	6	5	-	-	217	222	397	335	-	-
N.J.	4	3	-	-	64	142	146	141	759	560
Pa.	3	6	-	1	145	99	101	152	15	37
E.N. CENTRAL	19	28	-	1	586	550	412	419	56	105
Ohio	5	8	-	-	180	129	54	59	6	7
Ind.	6	4	-	1	28	40	17	22	-	1
III.	7	11	-	-	161	171	37	54	8	8
Mich.	-	-	-	-	125	169	304	261	42	89
Wis.	1	5	-	-	92	41	-	23	-	-
W.N. CENTRAL	2	2	3	2	181	194	110	112	465	672
Minn.	2	1	1	.	26	14	8	11		2
Iowa	-	-	-	-	42	18	10	12	1	-
Mo.	-	-	2	2	50	43	62	65	456	664
N. Dak.	-	1	-	-	1	2	4	-	-	-
S. Dak.	-	-	-	-	3	1	-	1	-	-
Nebr.	-	-	-	-	5	26	14	13	6	3
Kans.	-	-	-	-	54	90	12	10	2	3
S. ATLANTIC	30	28	1	5	1,299	845	821	636	83	36
Del.	-	-	-	-	9	4	7	12	4	2
Md.	1	4	-	1	157	119	67	70	6	4
D.C.	-	-	-	-	48	21	10	8	-	-
Va .	2	4	-	-	50	68	108	78	2	-
W. Va.	-	1	1	-	10	7	13	16	1	6
N.C.	3	1	-	4	128	72	132	109	14	10
S.C.	4	1	-	-	42	31	40	13	4	4
Ga.	13	13	-	-	308	468	256	192	21	
Fla.	7	4	-	-	547	55	188	138	31	10
E.S. CENTRAL	8	11	1	2	146	190	181	230	101	133
Ky.	-	-	-	1	34	47	28	26	2	5
Tenn.	5	5	-	-	60	73	73	111	20	37
Ala.	3	5	1	1	23	57	40	48	3	2
Miss.	-	1	-	-	29	13	40	45	76	89
W.S. CENTRAL	6	4	-	-	66	525	195	421	18	448
Ark.	-	-	-	-	25	33	60	55	3	5
La.	1	-	-	-	15	57	14	64	11	102
Okla.	5	4	-	-	25	81	12	61	4	4
Tex.	-	-	-	-	1	354	109	241	-	337
MOUNTAIN	24	12	5	1	331	403	253	262	50	37
Mont.	-	-		,	9	6	3	2		1
Idaho	1	-	-	-	20	44	5	8	-	1
Wyo.	-	-	-	-	2	2	10	$-$	6	4
Colo.	2	-	-	-	54	38	48	60	23	5
N. Mex.	4	6	1	1	9	18	42	68	-	11
Ariz.	12	4	3	,	174	210	94	85	3	9
Utah	4	2		-	34	38	20	15	2	1
Nev.	1	-	1	-	29	47	31	24	16	5
PACIFIC	17	31	1	3	961	1,030	408	687	68	83
Wash.	1	,	,	1	96	53	32	67	13	16
Oreg.	4	5	-	,	46	66	76	85	13	10
Calif.	9	24	1	1	811	889	294	517	42	57
Alaska	1	1	-	-	7	12	3	4		
Hawaii	2	1	-	1	1	10	3	14	-	-
Guam	-	-	-	-	-	1	-	-	-	-
P.R.	-	1	-	-	55	94	39	140	-	1
V.I.	-	-	-	-	-	-	-	-	-	-
Amer. Samoa	U	U	U	U	U	U	U	U	U	U
C.N.M.I.	-	U	-	U	-	U	29	U	-	U

$\mathrm{N}:$ Not notifiable.
U:Unavailable.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 (27th Week)*

Reporting Area	Legionellosis		Listeriosis		Lyme Disease		Malaria		Measles Total	
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	368	441	196	255	3,082	4,343	542	651	10^{\dagger}	80^{8}
NEW ENGLAND	18	18	24	24	254	1,045	33	42	-	5
Maine	2	1	2	-	-	-	1	3	-	
N.H.	2	4	2	-	38	20	5	2	-	-
Vt.	3	4	-	-	3	4	1	-	-	1
Mass.	7	4	15	14	148	502	12	19	-	3
R.I.	-	1	1	1	42	77	3	3	-	-
Conn.	4	4	4	9	23	442	11	15	-	1
MID. ATLANTIC	85	95	35	46	2,257	2,362	119	168	5	10
Upstate N.Y.	28	28	15	13	1,454	656	21	21	-	4
N.Y. City	18	11	10	13	75	37	74	104	5	2
N.J.	10	5	3	7	162	852	13	25	-	1
Pa.	29	51	7	13	566	817	11	18	-	3
E.N. CENTRAL	88	124	24	37	28	368	59	87	1	10
Ohio	39	55	9	6	24	9	11	12	1	3
Ind.	8	8	3	4	4	4	2	12	-	4
III.	-	15	1	12	-	21	16	35	-	3
Mich.	29	25	8	13	-	2	23	18	-	-
Wis.	12	21	3	2	U	332	7	10	-	-
W.N. CENTRAL	23	28	8	6	69	75	41	19	-	4
Minn.	2	6	-	-	41	39	14	6	-	2
Iowa	6	6	1	-	7	12	2	3	-	-
Mo.	10	9	5	3	17	20	10	6	-	2
N. Dak.	-	1	1	-	.	2	1	,	-	2
S. Dak.	1	2	-	-	-	-	-	-	-	-
Nebr.	4	3	-	1	-	2	5	2	-	-
Kans.	-	1	1	2	4	2	9	2	-	-
S. ATLANTIC	88	60	32	29	377	367	150	137	1	4
Del.	5	1	-	1	51	47	1	1	-	
Md.	14	17	4	3	207	234	41	60	-	3
D.C.	3	2	-	-	11	7	7	9	-	
Va.	8	9	3	5	23	61	11	28	-	-
W. Va.	N	N		4	5	4	2	1	-	-
N.C.	5	5	3	1	49	8	9	3	-	-
S.C.	5	1	3	2	3	2	4	4	-	-
Ga.	10	8	10	7	1	-	53	20	-	1
Fla.	38	17	9	6	27	4	22	11	1	-
E.S. CENTRAL	11	36	8	9	20	20	9	13	-	2
Kу.	6	9	2	3	9	7	2	3	-	2
Tenn.	1	15	3	3	5	7	2	6	-	-
Ala.	4	8	3	3	6	4	3	3	-	-
Miss.	-	4		-	-	2	2	1	-	-
W.S. CENTRAL	3	15	3	23	2	54	3	45	-	1
Ark.	-	-		1	-		1	3	-	-
La.	1	6		-	1	3	2	3	-	-
Okla.	2	3	3	1	-	,	-	2	-	,
Tex.	-	6	-	21	1	51	-	37	-	1
MOUNTAIN	20	28	18	24	12	5	26	28	-	1
Mont.	1	-	-			-		2	-	,
Idaho		1	2	1	2	2	-	3	-	1
Wyo.	4	2		1	-	1	,	-	-	-
Colo.	4	11	2	5	3	-	13	14	-	-
N. Mex.	1	2	2	5	1	-	1	2	-	-
Ariz.	3	8	9	6	2	-	5	3	-	-
Utah	6	2	3	1	3	-	4	2	-	-
Nev.	1	2		5	1	2	3	2	-	-
PACIFIC	32	37	44	57	63	47	102	112	3	43
Wash.	3	6	4	3		1	11	4	-	15
Oreg.	N	N	2	4	8	6	5	8	-	2
Calif.	29	26	33	49	54	38	78	92	3	20
Alaska	-	1		,	1	2	2	1	-	-
Hawaii	-	4	5	1	N	N	6	7	-	6
Guam	-	-	-	-	-	-	-	-	-	-
P.R.	-	2	1	-	N	N	-	3	-	-
V.I.	U	-			-	-	-	-	-	-
Amer. Samoa	U	U	U	U	U	U	U	U	U	U
C.N.M.I.	-	U	-	U	-	U	-	U	-	U

N: Not notifiable.
Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).
${ }^{\dagger}$ Of 10 cases reported, three were indigenous and seven were imported from another country.
§ Of 80 cases reported, 37 were indigenous and 43 were imported from another country

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 (27th Week)*

Reporting Area	MeningococcalDisease		Mumps		Pertussis		Rabies, Animal	
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	927	1,469	153	119	3,127	2,590	2,717	3,533
NEW ENGLAND	62	72	7	-	321	246	400	319
Maine	4	1	-	-	3	-	22	36
N.H.	7	9	4	-	6	10	11	6
Vt.	4	4	-	-	54	24	60	37
Mass.	30	43	2	-	248	196	134	112
R.I.	4	2	-	-	4	2	29	30
Conn.	13	13	1	-	6	14	144	98
MID. ATLANTIC	91	153	14	13	151	173	494	569
Upstate N.Y.	31	44	2	2	109	98	293	355
N.Y. City	12	25	1	8	7	31	10	14
N.J.	12	25	1	-	3	8	75	94
Pa .	36	59	10	3	32	36	116	106
E.N. CENTRAL	142	207	17	17	382	307	36	38
Ohio	53	57	3	1	214	165	10	14
Ind.	23	22	1	1	22	23	7	1
III.	27	50	6	12	56	34	7	4
Mich.	27	48	6	2	32	28	12	13
Wis.	12	30	1	1	58	57	-	6
W.N. CENTRAL	83	97	11	5	297	118	209	188
Minn.	20	14	3	2	99	31	16	18
Iowa	12	20	-	-	105	15	32	40
Mo.	34	35	3	-	58	52	20	14
N. Dak.	-	5	1	-	-	-	11	24
S. Dak.	2	4	-	-	5	3	32	26
Nebr.	10	10	-	1	4	3	-	4
Kans.	5	9	4	2	26	14	98	62
S. ATLANTIC	158	220	17	17	202	118	1,182	1,230
Del.	6	1	-	-	2	-	24	22
Md.	4	31	3	4	21	18	165	256
D.C.	-	-	-	-	1	1	-	-
Va .	27	27	3	2	88	12	258	222
W. Va.	-	6	-	-	7	1	92	67
N.C.	19	55	1	1	20	40	345	302
S.C.	14	22	2	1	26	21	41	67
Ga.	21	33	4	7	16	15	132	193
Fla.	67	45	4	2	21	10	125	101
E.S. CENTRAL	57	93	11	3	88	50	87	142
Ky.	10	15	4	1	27	13	16	12
Tenn.	23	39	2	-	36	20	49	106
Ala.	15	29	2	-	18	14	22	24
Miss.	9	10	3	2	7	3	-	-
W.S. CENTRAL	54	229	11	9	725	236	58	717
Ark.	20	12	-	-	317	11	-	-
La.	17	56	1	2	4	4	-	4
Okla.	16	20	-		34	9	58	42
Tex.	1	141	10	7	370	212	-	671
MOUNTAIN	62	71	12	8	434	892	120	131
Mont.	2	3	-		2	10	5	19
Idaho	3	7	1	-	46	164	6	2
Wyo.	-	4	-	1	7	-	13	20
Colo.	20	27	2	2	174	170	16	
N. Mex.	3	8	1	2	71	50	4	4
Ariz.	19	11	1	1	89	461	72	84
Utah	4	7	4	1	27	26	2	1
Nev.	11	4	3	1	18	11	2	1
PACIFIC	218	327	53	47	527	450	131	199
Wash.	41	43	-	1	233	76	-	-
Oreg.	34	38	N	N	89	28	2	-
Calif.	136	236	43	25	196	321	105	162
Alaska	1	2	-	1	2	2	24	37
Hawaii	6	8	10	20	7	23	-	-
Guam	-	-	-	-	-	-	-	-
P.R.	2	4	-	-	1	-	43	61
V.I.	-	U	-	-	-	-	-	,
Amer. Samoa	U	U	U	U	U	U	U	U
C.N.M.I.	-	U	-	U	-	U	-	U

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 $\underline{(27 t h \text { Week) }}$

Reporting Area	Rocky Mountain Spotted Fever		Rubella				Salmonellosis	
			Rubella		Congenital Rubella			
	$\begin{aligned} & \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	290	181	6	15	2	-	14,191	15,805
NEW ENGLAND	-	2	-	-	-	-	849	1,153
Maine	-	-	-	-	-	-	69	106
N.H.	-	-	-	-	-	-	46	87
Vt.	-	-	-	-	-	-	32	35
Mass.	-	2	-	-	-	-	469	666
R.I.	-	.	-	-	-	-	58	57
Conn.	-	-	-	-	-	-	175	202
MID. ATLANTIC	16	11	3	6	-	-	1,808	2,155
Upstate N.Y.	4	-	2	1	-	-	646	486
N.Y. City	2	1	-	4	-	-	588	589
N.J.	3	2	1	1	-	-	192	508
Pa .	7	8	-	-	-	-	382	572
E.N. CENTRAL	5	11	-	2	-	-	2,307	2,189
Ohio	4	1	-	-	-	-	639	657
Ind.	-	1	-	-	-	-	185	192
III.	-	9	-	2	-	-	717	610
Mich.	1	-	-	-	-	-	415	376
Wis.	-	-	-	-	-	-	351	354
W.N. CENTRAL	44	30	-	3	-	-	1,086	928
Minn.	-	-	-	-	-	-	249	288
Iowa	1	1	-	1	-	-	180	144
Mo.	43	27	-	1	-	-	409	227
N. Dak.	-		-	-	-	-	25	15
S. Dak.	-	2	-	-	-	-	42	60
Nebr.	-	-	-	-	-	-	51	65
Kans.	-	-	-	1	-	-	130	129
S. ATLANTIC	175	77	1	3	-	-	3,472	3,339
Del.	2	-	-		-	-	28	35
Md.	22	11	1	-	-	-	352	341
D.C.	-	-	-	-	-	-	37	33
Va .	7	5	-	-	-	-	388	544
W. Va.	1	-	-	-	-	-	46	52
N.C.	95	41	-	-	-	-	504	479
S.C.	28	11	-	2	-	-	193	323
Ga.	17	6	-	-	-	-	776	614
Fla.	3	3	-	1	-	-	1,148	918
E.S. CENTRAL	31	35	-	-	1	-	940	887
Ky.	2	1	-	-	-	-	152	157
Tenn.	21	28	-	-	1	-	250	236
Ala.	8	3	-	-	-	-	279	251
Miss.	-	3	-	-	-	-	259	243
W.S. CENTRAL	13	9	1	-	-	-	559	1,883
Ark.	-	4	-	-	-	-	286	240
La.	,	1	-	-	-	-	109	329
Okla.	13	4	-	-	-	-	162	138
Tex.	-	-	1	-	-	-	2	1,176
MOUNTAIN	5	6	-	-	-	-	981	966
Mont.	1	1	-	-	-	-	43	39
Idaho		1	-	-	-	-	58	62
Wyo.	2	2	-	-	-	-	27	30
Colo.	1	-	-	-	-	-	249	267
N. Mex.	-	-	-	-	-	-	137	120
Ariz.	-	-	-	-	-	-	286	255
Utah	-	2	-	-	-	-	81	110
Nev.	1		-	-	-	-	100	83
PACIFIC	1	-	1	1	1	-	2,189	2,305
Wash.	-	-	-	-	-	-	213	216
Oreg.	-	-	-	-	-	-	193	136
Calif.	1	-	1	-	-	-	1,617	1,754
Alaska		-	-	-	-	-	35	23
Hawaii	-	-	-	1	1	-	131	176
Guam	-	-	-		-	-	$\stackrel{-}{-}$	10
P.R.	-	-	-	3	-	-	85	465
V.I.	-	-	,	-	-	-		-
Amer. Samoa	U	U	U	U	U	U	U	U
C.N.M.I.	-	U	U	U	-	U	18	U

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 $\underline{(27 \text { th Week)* }}$

Reporting Area	Shigellosis		Streptococcal Disease, Invasive, Group A		Streptococcus pneumoniae, Drug Resistant, Invasive		Streptococcus pneumoniae, Invasive (<5 Years)	
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	6,574	7,681	2,343	2,216	1,268	1,749	125	261
NEW ENGLAND	121	127	117	152	8	83	1	30
Maine	3	4	14	10	-	-	-	-
N.H.	4	2	23	N	-	-	N	N
Vt.		3	9	9	3	7	1	-
Mass.	84	88	59	49	N	N	N	N
R.I.	7	8	12	8	5	-	-	2
Conn.	23	22	-	76	-	76	-	28
MID. ATLANTIC	387	809	408	390	75	112	43	73
Upstate N.Y.	91	303	206	168	67	110	43	73
N.Y. City	186	218	102	120	U	U	U	U
N.J.	48	148	71	66	N	N	N	N
Pa .	62	140	29	36	8	2	-	-
E.N. CENTRAL	671	1,274	345	537	107	117	49	64
Ohio	331	625	142	137	N	N	N	N
Ind.	37	119	21	42	102	117	24	36
III.	179	258	4	176	2	-	-	28
Mich.	72	148	178	136	3	-	N	N
Wis.	52	124	-	46	N	N	25	-
W.N. CENTRAL	575	769	164	220	145	85	29	31
Minn.	120	244	84	80	48	40	29	24
lowa	57	211	-	-	N	N	N	N
Mo.	78	135	36	55	6	9	-	-
N. Dak.	15	13	-	7	1	4	-	7
S. Dak.	148	84	9	7	1	3	-	-
Nebr.	104	38	13	27	23	9	N	N
Kans.	53	44	22	44	66	20	N	N
S. ATLANTIC	2,626	1,049	478	382	784	946	1	4
Del.	9	4	1	2	3	2	N	N
Md.	443	54	79	N	N	N	N	N
D.C.	31	24	5	3	33	3	1	3
Va.	472	103	50	59	N	N	N	N
W. Va.	4	5	12	15	34	36	-	1
N.C.	147	196	92	101	N	N	U	U
S.C.	43	127	27	7	121	194	N	N
Ga.	874	138	124	130	250	277	U	U
Fla.	603	398	88	65	343	434	N	N
E.S. CENTRAL	628	747	66	48	90	173	-	-
Ky.	70	276	12	18	10	18	N	N
Tenn.	29	48	54	30	80	154	N	N
Ala.	312	126	-	-	-	1	N	N
Miss.	217	297	-	-	-	-	-	-
W.S. CENTRAL	381	1,432	38	213	33	203	2	59
Ark.	101	360	5	-	5	13	-	
La.	63	141	-	-	28	190	1	59
Okla.	216	20	32	29	N	N	1	
Tex.	1	911	1	184	N	N	-	-
MOUNTAIN	289	402	401	242	26	29	-	-
Mont.	2		5	-	-	-	,	-
Idaho	2	18	5	4	N	N	N	N
Wyo.	3	2	7	7	8	5	-	-
Colo.	57	80	145	95		-	-	-
N. Mex.	56	60	65	51	18	22	-	-
Ariz.	132	184	173	82	-	-	N	N
Utah	21	26	6	3	-	-	-	-
Nev.	16	32	-	-	-	2	-	-
PACIFIC	896	1,072	326	32	-	1	-	-
Wash.	63	91	36	-	-	-	N	N
Oreg.	47	56	N	N	N	N	N	N
Calif.	757	896	254	N	N	N	N	N
Alaska	2	4	-	-	-	-	N	N
Hawaii	27	25	36	32	-	1	-	-
Guam		29	,	1	-	-	-	N
P.R.	2	12	N	N	-	-	N	N
V.I.	U		-	-	-	-	-	
Amer. Samoa	U	U	U	U	-	-	U	U
C.N.M.I.	10	U	-	U	-	-	-	U

N : Not notifiable. U: Unavailable. $\quad-:$ No reported cases.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending July 6, 2002, and July 7, 2001 $\underline{(27 t h \text { Week)* }}$

Reporting Area	Syphilis				Tuberculosis		Typhoid Fever	
	Primary \& Secondary		Congenital					
	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	3,083	2,907	154	272	5,436	6,638	125	159
NEW ENGLAND	62	27	-	3	203	241	10	8
Maine	-	-	-	-	5	10	-	1
N.H.	1	1	-	-	7	11	-	1
V t.	1	2	-	-	-	4	-	-
Mass.	46	15	-	2	103	117	8	5
R.I.	2	3	-	-	26	37	-	-
Conn.	12	6	-	1	62	62	2	1
MID. ATLANTIC	361	249	24	39	1,040	1,124	36	53
Upstate N.Y.	20	10	3	2	153	158	5	11
N.Y. City	200	142	10	19	530	575	19	21
N.J.	68	46	10	18	247	259	9	19
Pa .	73	51	1	-	110	132	3	2
E.N. CENTRAL	530	512	24	40	532	670	13	20
Ohio	72	48	-	2	86	127	4	2
Ind.	38	93	-	5	54	47	2	2
III.	131	154	18	26	270	336	1	9
Mich.	281	200	6	4	116	124	3	4
Wis.	8	17	-	3	6	36	3	3
W.N. CENTRAL	50	41	-	5	275	254	4	6
Minn.	18	19	-	1	119	108	3	2
Iowa	-	2	-	-	14	18	-	-
Mo.	16	9	-	3	81	59	1	4
N. Dak.	-	-	-	-	1	3	-	-
S. Dak.	-	-	-	-	9	8	-	-
Nebr.	4	1	-	-	9	20	-	-
Kans.	12	10	-	1	42	38	-	-
S. ATLANTIC	804	1,031	33	71	1,052	1,306	14	20
Del.	8	9	-	-	7	9	-	-
Md.	96	135	3	2	121	105	3	6
D.C.	48	15	1	2	-	37	-	-
Va .	39	61	1	4	86	121	-	5
W. Va.	-	-	-	-	12	16	-	-
N.C.	156	243	13	8	154	176	-	1
S.C.	65	144	3	18	96	113	$\bar{\square}$	-
Ga.	129	162	1	14	167	255	7	6
Fla.	263	262	11	23	409	474	4	2
E.S. CENTRAL	280	307	10	21	372	415	4	-
Ky.	52	23	2	-	69	61	4	-
Tenn.	108	173	3	13	140	151	-	-
Ala.	92	53	4	4	116	139	-	-
Miss.	28	58	1	4	47	64	-	-
W.S. CENTRAL	418	356	40	46	705	1,071	-	10
Ark.	12	21	1	5	70	68	-	-
La.	65	70	-	-	-	65	-	-
Okla.	30	36	2	3	62	71	-	-
Tex.	311	229	37	38	573	867	-	10
MOUNTAIN	146	109	9	14	175	241	8	6
Mont.	-	-	-	-	4	-	-	1
Idaho	3	-	1	-	8	3	-	-
Wyo.	-	-	-	-	2	1	-	-
Colo.	11	15	1	-	23	63	4	-
N. Mex.	25	9	-	1	20	33	-	-
Ariz.	100	76	7	13	92	89	-	1
Utah	3	6	-	-	14	11	3	-
Nev.	4	3	-	-	12	41	1	4
PACIFIC	432	275	14	33	1,082	1,316	36	36
Wash.	24	31	1	-	118	119	3	3
Oreg.	5	7	1	-	45	50	2	3
Calif.	398	231	12	33	818	1,044	31	28
Alaska	-				31	24	,	
Hawaii	5	6	-	-	70	79	-	2
Guam	-	2	-	-	-	37	-	2
P.R.	126	134	10	2	33	53	-	-
V.I.	-	-	-	-	-	-	-	-
Amer. Samoa	U	U	U	U	U	U	U	U
C.N.M.I.	13	U	-	U	27	U	-	U

N : Not notifiable.
U: Unavailable.

- : No reported cases.
* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE III. Deaths in 122 U.S. cities,* week ending July 6, 2002 (27th Week)

	All Causes, By Age (Years)								All Causes, By Age (Years)						P\& ${ }^{+}$ Total
Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	$\text { P\&I }{ }^{\dagger}$ Total	Reporting Area	All Ages	≥ 65	45-64	25-44	1-24	<1	
NEW ENGLAND	568	373	115	45	16	19	47	S. ATLANTIC	1,029	645	220	103	41	19	65
Boston, Mass.	139	80	29	14	9	7	16	Atlanta, Ga.	142	84	34	17	7	-	3
Bridgeport, Conn.	35	24	7	4	-	-		Baltimore, Md.	162	99	32	25	4	2	17
Cambridge, Mass.	17	15	2		-	-	1	Charlotte, N.C.	91	55	21	8	3	4	10
Fall River, Mass.	26	19	3	3	-	1	1	Jacksonville, Fla.	130	84	24	13	4	5	10
Hartford, Conn.	55	34	13	4	3	1	3	Miami, Fla.	U	U	U	U	U	U	U
Lowell, Mass.	29	24	5	-	-	-	-	Norfolk, Va.	46	28	8	7	3	-	-
Lynn, Mass.	16	11	5	-	-	-	-	Richmond, Va.	60	35	14	7	3	1	3
New Bedford, Mass.	27	22	4	1	-	-	5	Savannah, Ga.	77	54	12	7	2	2	10
New Haven, Conn.	44	24	13	4	2	1	6	St. Petersburg, Fla.	51	36	10	4	1	-	3
Providence, R.I.	46	34	5	3	-	4	3	Tampa, Fla.	139	90	32	7	6	3	7
Somerville, Mass.	5	1	2	2	-	-	-	Washington, D.C.	110	65	27	8	8	2	2
Springfield, Mass.	36	20	12	3	-	1	4	Wilmington, Del.	21	15	6	-	-	-	-
Waterbury, Conn.	41	33	3	1	1	3	4	E.S. CENTRAL	506	335	119	29	17	6	
Worcester, Mass.	52	32	12	6	1	1	3	Birmingham, Ala.	148	$\begin{array}{r}35 \\ \hline\end{array}$	39	5	8	1	12
MID. ATLANTIC	1,820	1,231	394	124	35	36	90	Chattanooga, Tenn.	48	39	7	2	-	-	1
Albany, N.Y.	35	20	12	2	1	-	5	Knoxville, Tenn.	66	44	13	7	2	-	6
Allentown, Pa.	24	18	3	1	2	-	3	Lexington, Ky.	73	44	21	4	3	1	4
Buffalo, N.Y.	76	53	16	2	4	1	4	Memphis, Tenn.	U	U	U	U	U	U	U
Camden, N.J.	26	15	6	3	2	-	3	Mobile, Ala.	70	51	14	4	-	1	3
Elizabeth, N.J.	11	9	1	1	-	-	1	Montgomery, Ala.	15	12	3	-	-	-	4
Erie, Pa.	54	41	8	4	-	1	1	Nashville, Tenn.	86	50	22	7	4	3	6
Jersey City, N.J.	19	11	5	3	18	13	35	W.S. CENTRAL	1,119	684	243	110	53	29	55
New York City, N. Y.	979	655	222	71	18	13	35	Austin, Tex.	1,119	684 32	14	3	5	3	1
Newark, N.J.	37	21	10	5	-	1	3	Auston Rouge, La.	24	17	2	1	1	3	1
Paterson, N.J.	17	12	5	-	-	-	1	Corpus Christi, Tex.	U	U	U	U	U	U	U
Philadelphia, Pa.	249	149	64	22	3	11	12	Dallas, Tex.	166	95	45	18	5	3	5
Pittsburgh, Pa. ${ }^{\text {® }}$	23	19	3	1	-	-	2	El Paso, Tex.	130	91	23	8	6	2	10
Reading, Pa.	23	16	1	2	5	4	11	Ft. Worth, Tex.	86	53	20	7	4	2	7
Rochester, N.Y.	99	73	18	3	3	2	11	Houston, Tex.	312	179	61	49	16	7	17
Schenectady, N.Y.	26	21	4	1	-	-	1		51	28	10				
Scranton, Pa.	26	21	4	1	-	-	1	New Orleans, La.	45	28	8	5	3 4	3	-
Syracuse, N.Y.	37	28	5	1	-	3	3	San Antonio, Tex.	151	95	38	8	8	2	8
Trenton, N.J.	20	15	4	-	1	-	1		26	20	5	1		2	2
Utica, N.Y.	17	15	1	-	1	-	-	Tulsa, Okla.	71	46	17	3	1	4	5
Yonkers, N.Y.	22	19	2	1	-	-	3	Tulsa, Okla.	71	46	17	3	1	4	5
E.N. CENTRAL	1,174	815	228	82	26	23	77	MOUNTAIN	745	492	154	69	17	12	42
Akron, Ohio	U	U	U	U	U	U	U	Albuquerque, N.M.	83	53	18	12	-	-	4
Canton, Ohio	30	24	4	1	-		6	Boise, Idaho	34 51	27	4	3	1	-	1
Chicago, III.	U	U	U	U	U	U	U	Colo. Springs, Colo.	51 94	42	4 24	4 11	5	6	2
Cincinnati, Ohio	U	U	U	U	U	U	U	Las Vegas, Nev.	242	154	59	22	4	2	14
Cleveland, Ohio	88	58	23	4	2	1	8				4		4	2	14 2
Columbus, Ohio	142	97	27	15	1	2	12	Ogden, Utah	U	15 \cup	4	U	U	U	U
Dayton, Ohio	110	77	25	4	4	-	3	Pueblo, Colo.	21	15	4	U	2	U	U
Detroit, Mich.	104	57	29	9	3	6	7						2		
Evansville, Ind.	33	24	6	1	-	2	-	Salt Lake City, Utah	91	64	17	5	2	4	10
Fort Wayne, Ind.	69	50	9	8	2	2	1	Tucson, Ariz.	108	74	17	10	3	4	2
Gary, Ind.	15	7	5	3	-	-	-	PACIFIC	1,032	727	207	60	20	18	76
Grand Rapids, Mich.	39	31	6	1	-	1	5	Berkeley, Calif.	13	8	5	-	-	-	-
Indianapolis, Ind.	197	128	41	16	6	6	14	Fresno, Calif.	61	44	13	2	2	-	7
Lansing, Mich.	21	17	2	1	-	1		Glendale, Calif.	U	U	U	U	U	U	U
Milwaukee, Wis.	86	63	15	5	1	2	9	Honolulu, Hawaii	68	53	13	2	-	-	3
Peoria, III.	27	14	7	3	2	1	4	Long Beach, Calif.	68	49	14	5	-	-	9
Rockford, III.	55	40	10	3	2	-	3	Los Angeles, Calif.	U	U	U	U	U	U	U
South Bend, Ind.	41	33	4	4	-	-	2	Pasadena, Calif.	16	14	2	-	-	-	3
Toledo, Ohio	66	53	10	2	1	-	2	Portland, Oreg.	102	71	20	6	3	2	3
Youngstown, Ohio	51	42	5	2	2	-	-	Sacramento, Calif.	150	112	32	4	2	-	12
W.N. CENTRAL	360	230	82	23	17	8	19	San Diego, Calif.	131	78	33	13	3	4	8
Des Moines, Iowa	U	U	U	U	U	U	U	San Francisco, Calif.	U	U	U	U	U	U	U
Duluth, Minn.	31	20	8	2	1	-	4	San Jose, Calif.	183	137	25	12	3	6	21
Kansas City, Kans.	20	9	7	1	3	-	-	Santa Cruz, Calif.	15	11	1		2	-	-
Kansas City, Mo.	68	38	15	8	4	3	6	Seattle, Wash.	85	58	20	2	2	3	5
Lincoln, Nebr.	22	17	2	2	-	1	-	Spokane, Wash.	65	39	13	8	3	2	
Minneapolis, Minn.	54	28	20	1	3	2	4	Tacoma, Wash.	75	53	16	5	-	1	4
Omaha, Nebr.	74	52	16	2	3	1	3	TOTAL	8,353	15,532	1,762	645	242	170	507
St. Louis, Mo.	U	U	U	U	U	U	U								
St. Paul, Minn.	23	22	1	-	-	-	1								
Wichita, Kans.	68	44	13	7	3	1	1								

[^2]All $M M W R$ references are available on the Internet at http://www.cdc.gov/mmwr. Use the search function to find specific articles.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.

References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format and on a paid subscription basis for paper copy. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic copy also is available from CDC's World-Wide Web server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/publications/ mmwr. To subscribe for paper copy, contact Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Address inquiries about the $M M W R$ Series, including material to be considered for publication, to Editor, $M M W R$ Series, Mailstop C-08, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333; telephone 888-232-3228.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

[^0]: *Alabama, Arizona, Arkansas, Colorado, Idaho, Indiana, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nevada, New Jersey, North Carolina, North Dakota, Ohio, Oklahoma, South Carolina, South Dakota, Tennessee, Utah, Virginia, West Virginia, Wisconsin, and Wyoming.

[^1]: -:No reported cases.

 * Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).
 ${ }^{\dagger}$ Not notifiable in all states.
 ${ }^{\text {§ }}$ Updated monthly from reports to the Division of HIV/AIDS Prevention — Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention (NCHSTP). Last update May 26, 2002.

[^2]: : Unavailable. $\quad-:$ No reported cases.
 occurrence and by the week that the death certificate was filed. Fetal deaths are not included.

 + Pneumonia and influenza.

 ๆ Total includes unknown ages.

